66 research outputs found

    Image quality evaluation of projection- and depth dose-based approaches to integrating proton radiography using a monolithic scintillator detector

    Get PDF
    The purpose of this study is to compare the image quality of an integrating proton radiography (PR) system, composed of a monolithic scintillator and two digital cameras, using integral lateral-dose and integral depth-dose image reconstruction techniques. Monte Carlo simulations were used to obtain the energy deposition in a 3D monolithic scintillator detector (30 × 30 × 30 cm3 poly vinyl toluene organic scintillator) to create radiographs of various phantoms—a slanted aluminum cube for spatial resolution analysis and a Las Vegas phantom for contrast analysis. The light emission of the scintillator was corrected using Birks scintillation model. We compared two integrating PR methods and the expected results from an idealized proton tracking radiography system. Four different image reconstruction methods were utilized in this study: integral scintillation light projected from the beams-eye view, depth-dose based reconstruction methods both with and without optimization, and single particle tracking PR was used for reference data. Results showed that heterogeneity artifact due to medium-interface mismatch was identified from the Las Vegas phantom simulated in air. Spatial resolution was found to be highest for single-event reconstruction. Contrast levels, ranked from best to worst, were found to correspond to particle tracking, optimized depth-dose, depth-dose, and projection-based image reconstructions. The image quality of a monolithic scintillator integrating PR system was sufficient to warrant further exploration. These results show promise for potential clinical use as radiographic techniques for visualizing internal patient anatomy during proton radiotherapy

    From multisource data to clinical decision aids in radiation oncology:The need for a clinical data science community

    Get PDF
    Big data are no longer an obstacle; now, by using artificial intelligence (AI), previously undiscovered knowledge can be found in massive data collections. The radiation oncology clinic daily produces a large amount of multisource data and metadata during its routine clinical and research activities. These data involve multiple stakeholders and users. Because of a lack of interoperability, most of these data remain unused, and powerful insights that could improve patient care are lost. Changing the paradigm by introducing powerful AI analytics and a common vision for empowering big data in radiation oncology is imperative. However, this can only be achieved by creating a clinical data science community in radiation oncology. In this work, we present why such a community is needed to translate multisource data into clinical decision aids
    • …
    corecore